Teaching

Ch 102. Introduction to Inorganic Chemistry. Structure and bonding of inorganic species with special emphasis on spectroscopy, ligand substitution processes, oxidation-reduction reactions, organometallic, biological inorganic chemistry, and solid-state chemistry. Instructors: Hadt, See
 Ch 112. Inorganic Chemistry. Introduction to group theory, ligand field theory, and bonding in coordination complexes and organotransition metal compounds. Systematics of bonding, reactivity, and spectroscopy of commonly encountered classes of transition metal compounds. Instructors: Agapie, Hadt
Ch 153 b-c. Advanced Inorganic Chemistry. Ch 153 b: Applications of physical methods to the characterization of inorganic and bioinorganic species, with an emphasis on the practical application of Moessbauer, EPR, and pulse EPR spectroscopies. Ch 153 c: Theoretical and spectroscopic approaches to understanding the electronic structure of transition metal ions. Topics in the 153bc alternate sequence may include saturation magnetization and zero-field splitting in magnetic circular dichroism and molecular magnetism, hyperfine interactions in electron paramagnetic resonance spectroscopy, Moessbauer and magnetic Moessbauer spectroscopy, vibronic interactions in electronic absorption and resonance Raman spectroscopy, and bonding analyses using x-ray absorption and/or emission spectroscopies. Instructors: Hadt, Peters